Biotechnology uses living organisms and biological systems to create new products. Over the last 50 years, this field has developed rapidly because of advances in genetic engineering that allow scientists to make changes to organisms’ DNA. New methods of genetic modification have led to rapid advances in gene editing and testing and have also become much more targeted, quicker, and cheaper. According to the US National Intelligence Council, “biotechnologies are at an inflection point […] turning science fiction into reality.”.[1]

Within the broad category of biotechnology, there are many emerging developments that are mentioned below (and many, many more that we do not have space to cover). Although it lies at the crossroads between the categories of science and technology, biotechnology is included in the ‘Science’ category here because its foundations are in scientific research and experimentation – and it overlaps with many other scientific fields such as molecular biology, biochemistry, and genomics. Nevertheless, a lot of the developments mentioned here have strong links to other trends in the technology category (e.g. ‘Artificial intelligence’).

While international standardization is no stranger to the field of biotechnology (ISO/TC 276, Biotechnology, was created back in 2013), the pace of development in this field and the breadth of its applications means that this is an area to watch for emerging-market needs.

Science trends

Gene editing

Advances in gene editing could potentially lead to enormous breakthroughs in human health, agricultural and industrial productivity, and sustainability. Technologies such as clustered regularly interspaced short palindromic repeats (CRISPR) have transformed this field, by enabling extensive genome editing and allowing scientists to precisely edit DNA using a bacterial enzyme.[2]

Gene editing could lead to significant improvements in human health and medicine by eliminating hereditary diseases (by modifying or replacing illness-causing genes), providing more effective and targeted treatments for diseases such as cancer, and eliminating causes of disease (e.g. malarial carrying mosquitoes).[3,4] As gene editing technologies become faster and cheaper, they will foster the shift towards personalized medicine.[1] They could even allow the transplant of animal organs into humans – in October 2021, a significant step was made towards animal-to-human transplants as surgeons in the US tested the transplant of a genetically modified pig kidney on a deceased recipient.[5,6]

Applying biotechnology such as gene editing to food production has the potential to significantly increase the sustainability of food production by boosting agricultural yields while reducing land and water use, increasing the nutritional content of food, and increasing crop resilience (resistance to pests and severe weather). Even meat-eating could become sustainable if the use of CRISPR technology can make the process of growing meat in the lab much cheaper and more efficient.[7] All these factors will be increasingly important to guarantee food security for populations dealing with the effects of climate change.[1]

Broader sustainability impacts could result from the application of gene editing technologies to create microbes that can produce biofuels, new construction materials, biodegradable plastics and more.[8] For example, cities of the future could potentially be lit up (at no cost and with no emissions) by bioluminescent algae, or plants that have been engineered to glow through the addition of genes for fluorescent proteins from these algae or jellyfish.

Nevertheless, there are moral and ethical questions that will arise as gene editing technologies become more advanced and where it may be difficult to find international consensus.[4] Human augmentation (enhancing human physical or cognitive abilities), the safety of genetically modified food or animals, the large-scale collection and storage of genetic data, and the possibility that gene editing technologies could be used to create targeted biological weapons – these are all issues likely to raise divisive political debates.

News stories

Les recommandations relatives au biobanking récemment publiées contribueront à faire avancer la recherche et le développement scientifiques.
Dans notre monde toujours plus complexe et interconnecté, avec des systèmes de santé confrontés à de nouveaux défis et à de nouvelles contraintes, la gestion du risque dans le secteur de la santé est plus …
Comité technique
ISO/TC 276
Biotechnologie
  • 35 Normes publiées | 24 Projets en développement
  • ISO 5058-1:2021
    Biotechnologie
    Édition génomique
    Partie 1: Vocabulaire
  • ISO/TS 9491-1:2023
    Biotechnologie
    Modèles informatiques prédictifs dans la recherche sur la médecine personnalisée
    Partie 1: Construction, vérification et validation des modèles
  • ISO/CD TS 9491-2 [En cours d'élaboration]
    Biotechnologie
    Modèles informatiques prédictifs dans la recherche sur la médecine personnalisée
    Partie 2: Lignes directrices relatives à la mise en oeuvre de modèles informatiques dans les systèmes intégrés d'aide à la décision clinique
  • ISO/DIS 18162 [En cours d'élaboration]
    Titre manque
  • ISO 18209-1:2024
    Titre manque
    Partie 1: Titre manque
  • ISO/CD 20012 [En cours d'élaboration]
    Titre manque
  • ISO/CD 20070 [En cours d'élaboration]
    Titre manque
  • ISO/CD 20309 [En cours d'élaboration]
    Titre manque
  • ISO/AWI 20387 [En cours d'élaboration]
    Biotechnologie
    «Biobanking»
    Exigences générales relatives au «biobanking»
  • ISO/CD 20397-3 [En cours d'élaboration]
    Titre manque
    Partie 3: Titre manque
  • ISO/TR 22758:2020
    Biotechnologie
    Biobanking
    Guide de mise en oeuvre de l'ISO 20387
  • ISO/TS 22859:2022
    Biotechnologie
    Banques biologiques
    Exigences relatives aux cellules stromales mésenchymateuses humaines issues des tissus du cordon ombilical
  • ISO 24088-1:2022
    Biotechnologie
    Biobanque des microorganismes
    Partie 1: Bactéries et archées
  • ISO/TS 24420:2023
    Biotechnologie
    Séquençage d'ADN massivement parallèle
    Exigences générales pour le traitement des données des séquences métagénomiques "Shotgun"
  • ISO 24603:2022
    Biotechnologie
    Biobanking
    Exigences relatives aux cellules souches pluripotentes humaines et murines
  • ISO 24651:2022
    Biotechnologie
    Biobanking
    Exigences relatives aux cellules stromales mésenchymateuses dérivées de la moelle osseuse
Comité technique
ISO/TC 34
Produits alimentaires
  • 932 Normes publiées | 135 Projets en développement
  • ISO/DIS 16677-1 [En cours d'élaboration]
    Titre manque
    Partie 1: Titre manque
  • ISO 23418:2022
    Microbiologie de la chaîne alimentaire
    Séquençage de génome entier pour le typage et la caractérisation génomique des bactéries
    Exigences générales et recommandations
  • IWA 32:2019
    Criblage pour la détection des organismes génétiquement modifiés (OGM) dans le coton et les textiles
Comité technique
ISO/TC 215/SC 1
Informatique génomique
  • 12 Normes publiées | 2 Projets en développement
  • ISO/TS 4424:2023
    Informatique génomique
    Éléments de données et leurs métadonnées pour décrire les informations relatives à la charge tumorale mutationnelle (TMB) du séquençage massif parallèle d'ADN
  • ISO/TS 4425:2023
    Informatique génomique
    Éléments de données et leurs métadonnées pour décrire les informations relatives à l'instabilité des microsatellites (MSI) du séquençage massif parallèle d'ADN
  • ISO 4454:2022
    Titre manque
  • ISO/TS 8376:2023
    Titre manque
  • ISO/TS 8392:2023
    Informatique génomique
    Règles de description des données génomiques pour les produits et services de détection génétique
  • ISO/TS 20428 [En cours d'élaboration]
    Informatique génomique
    Éléments de données et leurs métadonnées pour décrire les informations structurées de la séquence génomique clinique dans les dossiers de santé électroniques
  • ISO/CD TR 21394.2 [En cours d'élaboration]
    Titre manque
  • ISO/TS 22693:2021
    Informatique génomique
    Rapport de fusion de gènes clinique structuré pour les dossiers de santé électroniques
  • ISO/TS 23357:2023
    Informatique génomique
    Spécification du partage des données de génomique clinique pour le séquençage de nouvelle génération

Synthetic biology

Synthetic biology refers to the use of certain tools and approaches within biotechnology to create new biological parts or systems, for a specific purpose. These tools may include gene editing and there is certainly overlap and blurred lines between these two trends. However, the scale of DNA changes introduced in synthetic biology is generally larger, and synthetic biology also incorporates the fields of engineering, design, and computer science. A consensus definition drafted by a group of European experts defined synthetic biology as follows: Synthetic biology is the engineering of biology: the synthesis of complex, biologically based (or inspired) systems, which display functions that do not exist in nature. This engineering perspective may be applied at all levels of the hierarchy of biological structures – from individual molecules to whole cells, tissues, and organisms. In essence, synthetic biology will enable the design of biological systems in a rational and systematic way.[9]

The emerging global market for synthetic biology was estimated to be worth USD 11 billion in 2018 and to grow by 24% by 2025.[10] Several notable trends in synthetic biology include[2]:

  • mRNA vaccines: Instead of using bits of a live or dead virus, these vaccines introduce mRNA molecules that cause the body’s own cells to produce a protein, which then elicits an immune response. The mRNA vaccines for COVID-19 approved in December 2020 (Pfizer and Moderna) were the first ever mRNA vaccines to be marketed. In addition this type of vaccine has huge promise because it is quicker to design and test and can be made synthetically, without cultured cell-lines.
  • Organoids and organs-on-chips: Organoids are tiny in vitro organs grown from human stem-cells. These allow scientists to study how human tissue responds to drugs, viruses, and other stimuli in vitro. Organs-on-chips (or micro-physiological systems) are used for the same purpose but are engineered systems where cells from organs are grown on a chip (instead of in culture), which allows for a much more precise control of the cells and their micro-environment. This can lead to the development of much more advanced in vitro models of human systems.
  • DNA memory: In 2018, scientists discovered how to create random access memory (RAM) on DNA at scale. In 2020, Chinese scientists at Tianjin University stored 445 kB of data in a cell on the E. coli bacterium. Current magnetic or optical data-storage systems require huge amounts of space and energy. Using DNA as a medium for storing data could potentially solve future data-storage problems, as DNA data storage is durable and hundreds of terabytes of capacity could be stored in a pill-sized container.
Comité technique
ISO/TC 276
Biotechnologie
  • 35 Normes publiées | 24 Projets en développement
  • ISO 20399:2022
    Biotechnologie
    Matériaux auxiliaires présents lors de la production de produits thérapeutiques cellulaires et de produits de thérapie génique
  • ISO 20404:2023
    Biotechnologie
    Bioprocédés
    Exigences générales pour la conception d'emballages destinés à contenir des cellules à usage thérapeutique
  • ISO 20688-1:2020
    Biotechnologie – Synthèse des acides nucléiques
    Partie 1: Exigences relatives à la production et au contrôle qualité des oligonucléotides synthétisés
  • ISO 20688-2:2024
    Titre manque
    Partie 2: Titre manque
  • ISO/WD TS 20853 [En cours d'élaboration]
    Titre manque
  • ISO/TS 23511:2023
    Biotechnologie
    Exigences et considérations générales relatives à l'authentification de la lignée cellulaire
  • ISO/TS 23565:2021
    Biotechnologie
    Bioprocédés
    Exigences et considérations générales pour les systèmes d'équipement utilisés dans la fabrication de cellules à usage thérapeutique
  • ISO 24190:2023
    Biotechnologie
    Méthodes d'analyse
    Approche basée sur les risques pour la sélection et la validation de méthodes pour la détection microbienne rapide dans les bioprocédés

References

  1. Global trends. Paradox of progress (US National Intelligence Council, 2017)
  2. 2021 Tech trends report. Strategic trends that will influence business, government, education, media and society in the coming year (Future Today Institute, 2021)
  3. 20 new technology trends we will see in the 2020s (BBC Science Focus Magazine, 2020)
  4. Global strategic trends. The future starts today (UK Ministry of Defence, 2018)
  5. Global trends 2020. Understanding complexity (Ipsos, 2020)
  6. Surgeons successfully test pig kidney transplant in human patient (Guardian, 2021)
  7. Memphis meats uses crispr to create real meat from animal cells (Trendhunter, 2019)
  8. Future technology for prosperity. Horizon scanning by Europe's technology leaders (European Commission, 2019)
  9. Synthetic biology. Applying engineering to biology: Report of a NEST high-level expert group (European Commission, 2005)
  10. Future possibilities report 2020 (UAE Government, 2020)